一、指代不同
1、二重积分:是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。
2、三重积分:和式当||T||→0时的知极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分。
二、几何意义不同
1、二重道积分:二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
2、三重积分:三重积分就是立体的质量。当积分函数为1时,就是其密度分布均匀且为1,质量就等于其体积值。当积分函数不为内1时,说明密度分布不均匀。
三、应用不同
1、二重积分:用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广容泛应用。
2、三重积分:适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法。
点赞 (19)
回复