【解答】学习方法

用户头像
来自上海海洋大学-林牧发布于:2020-04-19 22:50:00

学习这件事情,从来都是每个人有每个人的方法,每个人有适合于每个人的方式,仁者见仁、智者见者。但是万变不离其宗,总有一些客观的规律是任何人都无法违背的,任何人都要遵循的。其中有些道理,其实大家都懂,因此道理不在于懂,而在于脚踏实地的践行之!

1、必须要做题,必须要多做题,必须要经常做题!

数学只靠做题是不行的,但是学数学不做题肯定更不行!

因此学习高数,必须要做多做题。尤其是在不定积分、隐函数求导、多元积分、常微分方程、求极限等一些需要大量习题来夯实基础的章节。

但是如果只是多刷题,势必就成了题海战术。何谓题海战术??大量做题并不等于题海战术,一味的大量做题而从不总结从不梳理知识才是题海战术。前期,必定要多做题,因为不做题就会造成对知识根本无法熟悉。后期可稍微少做点题,注意留存并分析典型题。因为前期做那么多题,心里一定对某部分知识或者题型有一定的理解和清晰度,那么在后期就应该沉下心来,花上半天时间来梳理下知识、做下总结。或者把自己内心涌动的暗藏的那些好东西给记下来,毕竟好记性不如烂笔头。

2、要善于做知识的梳理和小结

高等数学知识体系的细节繁多、尤其是各种定理、各种性质很多很多,且大多数都很抽象。因此在每次学完一块知识的时候,有效的梳理知识是很有必要的。

举个例子,比如在极限学习完毕。相信许多同学都做了很多求极限的题目。那么自己完全可以做一个专题,就是梳理下常见的求极限的方法有哪些?不要看不起这个梳理,因为后面还有多元函数求极限。如果此时不加梳理,那么到了多元函数求极限的时候,估计都把求极限的一般方法都忘的差不多了。而如果完成了梳理,那么势必在多元函数求极限时,内心会架构清晰,逻辑有序,并且会在做题时感觉到原来万变不离其宗,多元函数求极限大多数时候也是这几种方法啊。

再举个例子学习连续函数的时候,大家可以梳理连续函数都有哪些性质?必如有界性、单调性、周期性、奇偶性等,大家不必死记硬背,只要稍加梳理做到心中有数即可。如此还有连续函数的零点定理、介值定理、最值定理这些重要的定理也可以做个框架列出来。这些都能够帮助自己理清所学的内容。

再比如高等数学我们学习了那么多种积分、有一元函数的、多元函数的,那么大家可以仔细想想到底学了多少种具体的积分呢?每一种积分的异同点是什么、算法又是什么?大家完全可以做个表格或者写篇文章来个对比,这样既加深了印象又加深了理解。

总之,养成经常梳理知识的习惯非常有必要。那么什么时候需要梳理??依然以自己为标准,在你觉得对一块知识模糊不清、或者脑袋里一团浆糊的时候,就该停下来梳理下、思考下了。也说明你督促自己进步的机会来了,请不要轻易的放弃这个机会!

3、加深对知识的本质理解,探本求源

那么如何发现哪些知识应该探本求源,是自己需要深入本质理解的呢?很简单,仍旧是以自己为标准。只要是你觉得心中对某个知识点,总有一块说不清道不明的迷惑时候,那说明你就应该停下来,好好对这个知识进行探究了。首先应该搞明白,自己模棱两可的地方到底是什么,也*清问题所在。然后就八仙过海、各显神通,利用各种渠道去解决这个问题,而解决问题的过程其实就是探本求源的过程。

总之,加深知识的理解非常重要。对知识探本求源,虽然对做题目没有多大的帮助,但是却有助于我们对知识的融会贯通。更重要的是,让我们在探究的过程中,对学习产生兴趣,有一定的成就感!而且探本求源,是学习微积分、高等数学的最不可或缺的方法。如果想彻底理解高等数学中的知识,必须探本求源,求本质的、核心的理解。

点赞 (0) 回复
发布回复
点击图片